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Abstract 

Problems in fluid-structure interaction at small scale occur in applications related to 
bioengineering, micro-electromechanical systems and manufacturing processes. Due to the small scale 
and complex nature of the geometry, experimental investigations are limited in their effectiveness. Thus 
research in this area is dependent mainly on analytical and numerical investigations. However the 
complex nature of the geometry in addition to limitations existing in numerical techniques available in 
commercial codes promoted the use of major approximations both in the assumptions about the geometry 
and the necessary constitutive relations for closure in the problem. These assumptions prevented a 
comprehensive understanding of the physics of the phenomena. 

In paper industry there is considerable interest in understanding the fluid-structure interaction 
problem occurring in the process of wet-pressing. Because of the high volume manufacturing process of 
paper making, even a small increase in the efficiency of de-watering leads to significant savings in total 
energy cost. In this work a numerical tool based on a hybrid Lattice-Boltzmann Finite Element method 
has been developed to understand fluid-structure interaction in complex geometries. The image analysis 
software MIMICS has been used to obtain the solid model of the actual geometry called felt. This paper 
discusses the progress made in this direction.  
 

Introduction 
Problems where fluid and solid interact dynamically at small scales occur in various 

engineering and biomedical applications. Flow of blood in biological systems, micro-electro-
mechanical systems like lab-on-chip and ink-jet processes and flow in deformable porous media 
as occurring in paper manufacturing are some example of such applications. 

 

Figure 1a: Pictorial representation of water removal during wet-pressing. 

 b: Paper-felt system, showing machine direction and direction of compression 

a b 
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Figure 2: Effect of ingoing sheet moisture on cost of drying 

In the process of wet-pressing, that occurs during paper manufacturing, continuous sheets 
of wet paper web and felt pass through rollers or a roller and a die, as shown in Figure 1. Water 
in the paper web is squeezed partially into the felt and partially out of the system. Subsequently 
the moist paper passes through a series of heated rollers where the rest of the water is removed 
through vaporization. 

The goal of wet-pressing is to remove as much water from the paper web as possible 
without affecting the quality of paper. The dryness of the sheet is usually measured either by the 
percent solid in the paper or by the moisture ratio. Typically the process of wet-pressing removes 
45-50% of water from the wet paper. Drying removes 30-40% of water. The completely formed 
paper has 5-7% of moisture in it. 
 
 
 
 
 
 
 
 
 

As can be seen in the above Table 1, the cost of removing water in the drying stage is 
expensive because of the energy intensive process of vaporization. Energy spend in drying can 
be reduced if water is removed more effectively during pressing. It is important to note that due 
to the high volume process of paper making, even a small increase in the efficiency of wet-
pressing can lead to significant reduction in total energy cost. Figure 2 shows the effect of 
increasing the ingoing solids on the cost of drying. As can be seen, an increase in the solids by 
5% (50 to 55) going into the drying section, leads to a reduction in cost per ton of drying by $20. 
When accumulated over an entire year this may lead to millions in savings.  

 

Process % solids at end of process Energy/Kg of water removed 

Pressing 45-50 2.786 KJ/Kg 

Drying 85-93 
2257 KJ/Kg (latent heat of 

vaporization) 

Table 1: Compares the process of pressing and drying in terms of 

solids removed and cost per gram of water removed. 
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Figure 3: The 4 phases in the process of pressing as described by Nilsson & Larson [1964]. 

Consequently the process of pressing has been studied extensively. The studies have 
concentrated mostly on the physics in the paper web. The aim being, to determine the optimum 
pressing regime to improve the efficiency of de-watering during pressing.  

Experimental studies performed by Wahlstrom [1960], Nilesson & Larson [1964], Busker 
[1980] and Busker et al [1984] helped in further understanding the process qualitatively. These 
investigations led to the understanding of different phases in the process of pressing. Figure 3 
shows the four phases during the process of pressing as described by Nilesson & Larson [1964]. 
However, the high machine speed (~ 10 ms-1), low residence time ((~ 10-2 s) and small length 
scales ((~ 10-4 m) limited the effectiveness of the experimental data for industrial application. 

 
 
 

 The problem was investigated with analytical and numerical methods by Kataja et al 
[1992], Jonsson et al [1992, 1992],Velten et al [2000], Bezanovic et al [2006, 2007, 2007]. They 
used homogenization principles along with assumptions about the constitutive relations about the 
solid and fluid to reduce the problem for one-dimensional analysis. However in reality the felt 
structure is highly non-homogeneous and the newer felt design necessitates a variation in felt 
porosity. The lack of a comprehensive understanding of the various parameters on the 
deformation and de-watering of felts has meant that the design have been based on a qualitative 
understanding. 
In an attempt to understand wet-pressing, this research work tries to understand deformation of 
porous media under externally applied load and the effect of fluid inside it. In order to answer 
some of the questions posed above, it becomes imperative to model pressing as a three-
dimensional problem along with modeling the heterogeneity of the porous media. However, the 
complex nature of the geometry and the small time scale require high spatial and temporal 
resolution leading to large computational load. Thus efficient numerical tools need to be chosen. 

For modeling fluid flow, the Lattice-Boltzmann method has evolved as an attractive 
alternative. The accuracy of Lattice-Boltzmann method has been shown to be comparable to 
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traditional numerical methods like Finite-Volume, Finite-Difference and Finite-Element [Noble 
et al (1996); Bernsdorf et al (1999), Breuer (2000)]. Further, for solving flows in complex 
geometries like porous media, the Lattice-Boltzmann method has proved to be more efficient 
than traditional methods [Bernsdorf et al (1999)]. Because of the local nature of the calculations, 
the method is amenable to distributed computing. This use of LBM is critical in this research 
work, as the size of the computational domain turns out to be very large, one  that cannot be 
efficiently solve using serial computing. In this research work, a LBM with single-relaxation 
BGK model as implemented in Aidun et al (1998) has been used. 

In this work, as a first approximation, a linear elastic model has been used for simulating 
the deformation of the felt geometry. In reality, the felt material shows a partial plastic behavior 
in the first stage of pressing. In subsequent stages the behavior is more close to elastic (Velten et 
al (2000); Beck (1983)].  However during the compression phase, the material behaves as elastic 
for all practical purposes. The Finite Element method with 4-node linear quadrilateral elements 
have been used to discretize the geometry and form the weak system. The reason for using Finite 
Element method for modeling the deformation of the solid phase is because of its robustness and 
accuracy. Further there has been progress in development of efficient parallel iterative schemes 
[Saad (1996)] that make the solution of solid phase easy. Also with the improvements in meshing 
algorithm, it is now trivial to mesh a complex geometry such as the felt. 

 In the following, details have been provided regarding the procedure for geometry 
reconstruction. Additionally the Lattice-Boltzmann Finite-Element technique is outlined with 
information on parallelizing the code and running on large clusters. Finally results of some 
validation studies and sample simulation run on actual geometry are provided. 

 
 

Methodology 
 
Geometry Reconstruction 

A sample of porous felt is shown in Figure 4. In order to perform a finite element analysis 
of the deformation and Lattice-Boltzmann analysis of flow through the geometry, a solid model 
of geometry needs to be obtained. In the following a brief outline of the procedure for 
reconstructing the solid model from the sample is given. 

X-ray Microtomography was used to obtain images of the sample at specified intervals as 
show in Figure 5a. In this case the sample was a 3mmx3mmx3.15mm piece of drying felt. The 

images were taken at an interval of 3.5 microns. This was done using skyscan 1072. 
  By selecting the appropriate pixels from all the images and using them to generate 
voxels, a three-dimensional geometry can be created. This process consists of thresholding, 

Figure 4: Image of felt sample provide used in wet-pressing. 
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region growing and 3D reconstruction. Further surface smoothing algorithms and triangle quality 
improvement algorithms can be used to improve the quality of three-dimensional solid model for 
FEA analysis. Materialize’s MIMICS package was used to carry out the above operations for 
constructing the solid model from X-ray Microtomography images. 

 
 

Lattice-Boltzmann Method  
The Lattice-Boltzmann method (LBM) is based on a specialized discretization of the 

continuous Boltzmann equation. As such, it is a kinetic model that models the fluid phase at a 
mesoscopic level.  

Just as its predecessor the lattice-gas automata, the LBM starts with an initial lattice 
where particles residing at each lattice node evolve in time based on certain rules. During this 
process the particles propagate and collide with other particles. The average motion of the 
particles describes the macroscopic behavior of the system. 
 In LBM, the state of the fluid is defined by a single-particle distribution function fσi(r,t) 
indicating the probability of finding a particle at r and time t. At each time step the particles 
propagate to the neighboring lattice along discrete velocity vectors eσi. The dynamics of 
propagation are governed by the following lattice-Boltzmann equation. The method is 
implemented based on Aidun et al [1998] 
 

(1) 
 
Where τ is the relaxation parameter. It can be set to obtain the appropriate viscosity, as given in 
the following equation. 
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The equilibrium distribution feq
σi(r,t)is given as, 

 
(3) 

 
where the coefficients of the equilibrium equation Aσ Bσ Cσ and Dσ are derived based on the 
conservation laws of mass, momentum and energy. The hydrodynamic fields, mass density ρ, 

momentum density ρu and the momentum flux given as ρI+ ρuu are given as follows 

Figure 5: (a) X-ray Microtomography image of felt sample; (b) Using thresholding, region 

growing and isolation on pixels; (c) three-dimensional mesh of the solid model generated 

from images 
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(4) 

 
(5) 

 
(6) 

 
 

Finite Element Method 
The deformation of the porous media has been idealized using a linear elastic model. 

Cauchy’s equation governs the trajectory and deformation of an elastic deformable solid. 
 

 (7) 
 

The geometry has been discretized using 4-node linear tetrahedral elements. The meshing 
was done using MIMICS's FEA module. Within each element the deformation is approximated 
using linear Lagrangian shape functions. The resulting weak system of equations is given by the 
following equation. 
 

(8)       
 

Where u is the deformation vector, M, C and K are the mass, damping and stiffness 
matrices respectively.  Newmark’s method is used to integrate the above 2nd order system of 
equations in time. According if ut is the deformation at time t and ut+1 is the deformation at time 
t+1 then the above system of equations modifies to  
 
 
 
 

(9) 
  

 
 

(10) 
 

(11) 
 
Here β and γ are Newmark’s constant. The resulting system of equations is solved using 

iterative schemes.  
 
 

Fluid-Solid Coupling 
  Transfer of forces between fluid and solid is affected through the boundary links where a 
bounce-back boundary condition is applied. The hydrodynamic forces on the moving boundary 
is calculated using the following equation.  

(12) 
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Parallel LBM-FEM code 
Need for parallel computing 
 The complex nature of the geometry and the need to capture the flow physics at small 
scale necessitates the LB and FE meshes to resolve the geometry with sufficient accuracy. In 
choosing a LB mesh for a given FE mesh, the accuracy with which the force values are 
transferred between fluid and solid needs to be considered. This introduces a length scale lfea 
(MecMaccen et al [2009])  which is defined as the ration of average FE edge length to 1 lattice 
unit. For accurate transfer of forces between LBM and FEM there is a limitation on lfea given as 
{lfea > 2.5}. This implies that the resolution of LB mesh is dependent on the average edge length 
of FE mesh.  

On the analysis void distribution analysis of the geometry it is found that the average 
pore size is about 0.02 mm. In order to resolve the pores accurately a FE mesh with minimum 
edge length of 0.005mm is chosen. Note that this edge length is 4 times smaller than the average 
pore size; thus approximately 4 linear quadrilateral elements can be used to resolve the average 
pore. Taking the limitation of LB mesh into account from the lfea ratio, we conclude that 1 LB 
length unit should equal 0.002mm. Based on this correlation the size of LB mesh, memory 
required and thus computational resources required were extrapolated. Table 3 gives this 
information. 

 
 
 
 
 
 

 
 
  

 
 
 
Further the above estimations do not involve the memory requirement for FEA analysis. 

It is expected that for an FEA analysis the memory requirement are only a fraction of that of 
LBM. Thus a problem of this magnitude would require massively parallel computing resources 
to attempt a solution in realistic time frame. 
 In this research work the following parallel computing resources have been and would be 
used to carry out the intended simulations. 
 

1. IBM IA-63 linux cluster (Mercury) 
1,774 Intel Itanium 2 1.3/1.5 GHz processors, 4 GB to 12 GB memory/node 
Peak performance: 10.23 TF (7.22 TF sustained) 

2. Dell 1950 compute nodes (Steele), 
840 dual quad-core 64-bit Intel 2.33 GHz E5410 CPUs with 16 GB or 32 GB of RAM. 
Peak Performance: 62.63 TFLOPS 

3. TACC Sun Visualization Cluster (Spur) 

Size of Geometry x10
-2

 

mm 

Total Lattice Nodes Memory Required Computational units

4GB/node    8GB/node 

0.2x0.2x0.2 100x100x100 0.8 GB 1 1 

1x1x1 500x500x500 93 GB 24 12 

3x3x3 1500x1500x1500 2514.5 GB 630 315 

Table 3: Memory and computational requirements of the Lattice-Boltzmann code for a given 

domain size. 
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128 compute cores, 2.33 GHz AMD opteron and 32 NVIDIA FX5600 GPUs. 

 
 

Parallelizing LBM-FEM code 
 The compute nodes used to carry out the LBM calculations (Fluid-CPUs) are different 
from the compute nodes used for FEA calculations (Solid-CPUs). At each time-step the Fluid-
CPUs need the current location and velocity of FEA nodes and similarly the Solid-CPUs need 
the current forces on FEA nodes. This information is communicated between the Fluid-CPUs 
and Solid-CPUs through the use of efficient data structures and functions for storing and 
communicating information. The code is tightly coupled with PETSc (Balay et al [1997]) which 
provides the necessary data structures and functions for scientific high performance computing.  
 

Parallelizing the LBM code 
According to the Lattice-Boltzmann equation (1), the distribution function at lattice node 

x and time t+1 is solely dependent on the distribution function at lattice x+ei and at time t. This 
means that there is no need for assembly and solution of equations. Such local nature of 
algorithm should benefit from a “data-parallelism” approach.  

Data-Parallelism is achieved by dividing the domain among the available processors also 
called ranks. As shown in Figure 6, upon the division of domain, an extra layer of cells also 
called ghost cells are added to each sub-domain. These ghost cells facilitate the transfer of 
information between each sub-domain at every time-step, thus maintaining the continuity of the 
entire domain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preliminary Results 
Flow simulation 
 The effects of fluid flow inside the felt geometry were determined using a flow simulation 
of the geometry as shown in Figure 7. The boundary conditions are as shown in figure 9. A 
parabolic inlet velocity was used and the geometry was placed inside a rectangular channel with 
walls. The outlet was set to shear-free boundary condition. 

Figure 6: Division of a Lattice-Boltzmann domain into 4 sub-domains. The nodes in black 

are regular nodes and nodes in red are ghost nodes. 
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 The resulting normal stress and shear stress distributions on the geometry are as given in 
the following figure. 

 

Solid deformation 
A smaller sized geometry was used to simulate deformation of the solid. Figure 8 shows the 
geometry and the applied loads on the left and the resulting deformation on the left. Though the 
developed numerical technique can also calculate stress and strain distribution resulting from the 
applied loads, for the analysis of wet-pressing it is sufficient to analyze just the deformation. 
 
  
 
 
 
 
 
 
 
 
 
 

 
 

wall 

wall 

U 

Figure 7: Set up and boundary conditions for simulating flow over the porous geometry. 

load 

Figure 8: Deformation of solid geometry, boundary conditions specified on left. On right the 

resulting deformation color scale represents extent of deformation. 
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Effect of pore distribution 
 A significant research goal of this work is to understand the effect of pore size 
distribution in the felt on its deformation and de-watering characteristics. The experimental 
research done by Busker et al [1984] concluded that felts with high permeability and low 
compressibility will lead to higher de-watering efficiency. However, felts with high permeability 
lead to decrease in paper quality. This resulted in variation in felt permeability in the direction of 
thickness. By making use of various felt geometries used in paper industry we intend to look at 
the effect of variation in felt permeability in dewatering efficiency.  
 We hope to make use of the features available in Mimics’s “pore analysis module” to 
accomplish this task. Since the module allows the use of any geometry in the form of an STL file 
for pore analysis, the goal is to look at variation in pore distribution as the felt deforms.  
 
(More results expected here soon) 

 
Impact and Significance of Proposed Research: 
 
 At the core of the present research work is the development of a numerical tool that can 
be used to model fluid-structure interaction in complex geometries. The use of LBM for 
modeling fluid phase and FEM for the solid phase lends a number of unique features as already 
described earlier, for modeling such problems. The ability to make use of parallel computing 
resources with efficient scaling in fluid-structure interaction problems is a novel achievement in 
this area. Thus this numerical tool provides the capability of solving larger problems in this field 
that have not been attempted before. 
 The findings from the second part of the research work are critical for understanding the 
dewatering of felt. Better void fraction variation in the felt could lead to better dewatering of felt 
and pulp system during wet pressing. Even a small improvement in dewatering efficiency can 
lead to significant improvement in the energy efficiency for the paper industry. 
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