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Abstract 
 

Background. The complex perfusion of the liver microcirculation is often analyzed in terms of 

idealized functional units (hexagonal liver lobules) based on a porous medium approach. More 

elaborate research is essential to assess the validity of this approach and to provide a more 

adequate and quantitative characterization of the liver microcirculation. To this end, we 

modeled the perfusion of the liver microcirculation using an image-based 3D reconstruction of 

human liver sinusoids and computational fluid dynamics techniques.  
 

Method of Approach. After vascular corrosion casting, a microvascular sample (± 0.134 mm³) 

representing 3 liver lobules, was dissected from a human liver vascular replica and scanned 

using a high resolution (2.6 µm) micro-CT scanner. Subsequently, the images were segmented 

and reconstructed in 3D using Mimics (Materialise, Belgium). Following image processing, a 

cube (0.15x0.15x0.15 mm³) representing a sample of intertwined and interconnected sinusoids, 

was isolated from the 3D reconstructed dataset to define the fluid domain (Magics, Materialise, 

Belgium). Three models were studied to simulate flow along 3 orthogonal directions (i.e. parallel 

to the central vein and in the radial and circumferential directions of the lobule). Inflow and 

outflow guidances were added to facilitate solution convergence, and good quality surface (3-

Matic, Materialise, Belgium) and volume meshes (TGrid, Ansys, USA) were obtained using 

approximately 1 million triangular and 9 million tetrahedral cells. Subsequently, 3 

computational fluid dynamics models were generated and solved using Fluent (Ansys, USA) 

assuming Newtonian liquid properties (viscosity 3.5 mPa·s). Post-processing allowed to visualize 

and quantify the microvascular flow characteristics, to calculate the permeability tensor and 

corresponding principal permeability axes as well as the 3D porosity. 
 

Results. The computational fluid dynamics simulations provided data on pressure differences, 

preferential flow pathways and wall shear stresses. Notably, the pressure difference resulting 

from the flow simulation parallel to the central vein (0 - 100 Pa) was clearly smaller than the 

difference from the radial (0 – 170 Pa) and circumferential (0 – 180 Pa) flow directions. This 

resulted in a higher permeability along the central vein direction (kd,33 = 3.64·10-14 m²)  in 

comparison with the radial (kd,11 = 1.56·10-14 m²) and circumferential (kd,22 = 1.75·10-14 m²) 

permeabilities which were approximately equal. The mean 3D porosity was 14.3%. 
 

Conclusions. Our data indicate that the human hepatic microcirculation is characterized by a 

higher permeability along the central vein direction, and an about two times lower permeability 

along the radial and circumferential directions of a lobule. Since the permeability coefficients 

depend on the flow direction, (porous medium) liver microcirculation models should take into 

account sinusoidal anisotropy. 

In conclusion, this model helps to gain more insight into the complex liver microhemodynamics. 

Towards the future, it is applicable to study the hepatic microcirculation in several 

(un)physiological and pathological conditions (e.g. machine perfusion, portal hypertension, 

cirrhosis, etc.). 



 

 

1. Introduction 

The blood flow through the liver is known to be unique and complex, especially at the level of 

the microcirculation due to the fact that the liver receives blood from the hepatic artery (HA) 

and the portal vein (PV) [1-6]. The HA and PV vascular trees branch until they reach the 

microcirculation at the level of the so-called hepatic functional units, typically considered as 

hexagonal lobules [7-9]. In this conceptual model, each lobule receives blood from its periphery 

through the hepatic arterioles and portal venules located in each of the portal triads (Fig. 1). At 

the level of the lobules, HA and PV blood is mixed in the sinusoids (hepatic-specific capillaries) 

where the metabolic activity and exchange of nutrients, oxygen etc. with the hepatocytes takes 

place. Subsequently, the blood is drained radially towards the central veins. These veins cluster 

until they reach the outflow hepatic veins (HV) and the vena cava inferior [1, 9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The human liver macrocirculation (left) and microcirculation (right). The liver receives blood from the 

hepatic artery (HA) and portal vein (PV). The HA and PV branch until they reach the level of the microcirculation at 

the typical hexagonal lobules (right panel). Every lobule receives blood from its periphery through the hepatic 

arterioles and portal venules. These are located in the portal triads at each corner of the lobule. Consequently, HA 

and PV blood is mixed in the sinusoids and drained radially towards the central vein. On their turn, the central veins 

cluster towards the outflow hepatic veins (HV) and vena cava inferior.  

 



 

Despite the fact that this conceptual model of liver functional units is widely used, liver 

perfusion is still relatively poorly understood. This has implications for several liver-related 

research areas. In liver transplantation research, the optimal conditions to preserve and perfuse 

donor livers, when livers are subjected to (hypothermic) machine perfusion, are still poorly 

defined [10-17]. Moreover, the hemodynamic influence of complications such as portal 

hypertension and the small-for-size syndrome induced by living donor liver transplantation is 

being investigated [18-20]. In addition, similar questions arise in the case of liver pathologies 

(cirrhosis, steatosis etc.) influencing the liver perfusion, ablation treatments for hepatocellular 

tumors, diagnosis etc. [21, 22]. 

 

Numerical models may be an important tool to study liver perfusion on different scales 

(macrocirculation versus microcirculation), and lead to a better understanding of the organ’s 

hemodynamics. Existing liver circulation models, however, mainly focus on the liver 

macrovasculature, representing the branching of the HA, PV and HV vessels [23-27]. In contrast, 

only a few studies have been performed on the liver microcirculation, i.e. the sinusoids between 

the portal tracts and the central veins within the lobules (Fig. 1). These studies were usually 

based on idealized geometries and the conceptual hexagonal liver lobule model. Rani et al. [28] 

studied the hepatic microcirculation using finite volume blood flow simulations in an idealized 

3D segment of a hepatic lobule including a terminal HA, PV, HV and fenestrated sinusoidal 

space. Ricken et al. [29] developed an idealized 2D model of the blood flow through a 

longitudinal transection of liver lobules using a transverse isotropic permeability in the direction 

of the central vein. Furthermore, a 2D porous model of the blood flow through a hexagonal 

lobule transection was developed by Bonfiglio et al. [30], assuming an isotropic permeability 

and porosity for their first model, and an anisotropic permeability (radial versus circumferential) 

but isotropic porosity for a second model. Wambaugh et al. [31] and Shah et al. [32] used a 

graphical model with a discrete topology of the sinusoidal network to simulate the portal to 

centrilobular mass transfer of chemicals in a virtual tissue representing a hepatic lobule. 

 

The sinusoidal microvasculature is thus often modeled as a porous medium with an isotropic 

permeability and/or porosity, an assumption which, to our knowledge, has never been 

validated. In addition, (human) liver microvascular flow has so far only been studied based on 

idealized geometries.  

 

The aim of the present study is to numerically model the blood flow in the human hepatic 

sinusoidal microcirculation based on micro-CT images of real 3D sinusoidal geometries of a 

human liver, using computational fluid dynamic methods. Moreover, we investigated whether 

modeling the hepatic sinusoidal microvasculature as a homogeneous isotropic material is a valid 

approach by calculating the sinusoidal porosity as well as the permeability tensor of the tissue.  



 

2. Materials and methods 

This study was executed using a human liver discarded for transplantation after failed rescue 

allocation by Eurotransplant (Leiden, The Netherlands). As part of research related to machine 

perfusion preservation of the liver, this study was approved by the Ethical Committee of the 

University Hospitals Leuven (Belgium) and by the Belgian Liver and Intestine Committee. To 

obtain the numerical microcirculation model and the corresponding results, several steps were 

taken as described below: (1) vascular corrosion casting and micro-CT imaging to acquire the 

sinusoidal geometry; (2) image processing to calculate the 3D morphology; (3) the generation of 

the meshes for the computational fluid dynamics calculations; (4) defining the boundary 

conditions for the simulations and post-processing of the data; (5) calculation of the 

permeability tensor.  

 

2.1 Vascular corrosion casting and micro-CT imaging 

The human liver used for this study was recuperated from a human donor discarded for 

transplantation based on strict medical criteria (in this case because of steatosis). Although 

discarded, the liver showed no evidence of relevant anatomical or vascular differences 

compared to healthy livers. After resection of the liver from the donor body, the liver was 

preserved using hypothermic machine perfusion (HMP) as described in [24]. Even though the 

advantage of HMP is that the microvasculature is kept open and intact, the combination of HMP 

and casting might have had an effect on the microcirculation. Nevertheless, the dimensions of 

the sinusoids were in good agreement with the sinusoidal dimensions found in literature [1, 6, 

33]. 

 

The goal of the vascular corrosion casting procedure was to obtain a replica of the vascular trees 

of a human liver. A human liver with a normal macroscopic appearance was simultaneously 

injected with a polymer through the HA and the PV. The injection fluid contained Batson’s #17 

monomer solution (100 parts), Batson’s catalyst (15 parts), Batson’s promoter (1 part) 

(Polysciences, Warrington, USA) and monomeric methyl methacrylate (20 parts) (Merck, 

Darmstadt, Germany). The liver was injected until sufficient quantities of resin were emerging 

from the HV. Subsequently, all vessels were clamped and the injected fluid polymerized during a 

period of approximately 2 hours. Afterwards, the liver tissue was macerated in potassium 

hydroxide (25% KOH) to generate the polymerized vascular replica. More elaborate details 

about the vascular corrosion casting procedure can be found in [24]. 

A small volume sample (± 0.134 mm³), obtained from the left liver lobe was dissected from the 

liver cast and imaged using a scanning electron microscope (SEM; JEOL JSM 5600 LV, Jeol, 

Zaventem, Belgium) to verify whether the liver sinusoids were sufficiently casted. This resulted 



 

in the SEM image of the geometry shown in Fig. 2a. The intertwined and interconnected liver 

sinusoids are clearly visible, giving evidence of a liver cast of which the microcirculation was 

clearly filled with the injected polymer. The sample was subsequently scanned with an in-house 

developed high-resolution micro-CT scanner to obtain the 3D geometry with a resolution of 2.6 

µm (see [24] for more information).  

 

 

 

 

 

 

 

 

2.2 Image processing 

 

 

 

The digital micro-CT datasets were processed using the software package Mimics (Materialise, 

Leuven, Belgium). The dataset was segmented based on its grey values to extract the features of 

the liver lobules and sinusoids, and a 3D reconstruction was calculated, leading to the 

visualization of three liver lobules (see Fig. 2a) or three primary modules according to Teutsch 

[7]. Because of the total dataset size and computer performance restrictions as well as 

computational costs, a sample was “virtually” dissected (Fig. 2b and 3) by calculating the 

intersection between a cube with predefined dimensions (0.15 x 0.15 x 0.15 mm³) and a lobule 

by using Magics (Materialise, Leuven, Belgium). As such, the fluid domain for the computational 

fluid dynamics model was created. However, it was not straightforward to identify the individual 

classical liver lobules in the dataset (hexagonal prism-like structures; Fig. 1 and 3), since it was 

difficult to localize the portal triads (consisting of the terminal branches of the HA and PV as well 

as the intrahepatic bile ductules) at the boundaries of the lobules in a human liver (lobules are 

clearer delineated by connective tissue in other species such as rat and porcine livers). The final 

segmentation was based on the identification of the vascular septa in between lobules which  

Figure 2. (a) Scanning electron microscopic image of the sample that was dissected out of the human liver cast. The 

intertwined and interconnected liver sinusoids are clearly visible in this cast sample representing three liver lobules. 

(b) 3D reconstruction of the simulation geometry of the case in which a pressure difference is established in the r 

direction. The origin (0, 0, 0) is located at the center of the sample. The inflow and outflow guidances are clearly 

visible, as well as an illustration of the surface mesh density. The meshes existed of approximately 1 million 

triangular surface elements and 9 million tetrahedral volume elements capturing the sinusoidal geometrical 

features. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

appeared brighter on the micro-CT images. This was due to contrast agent particles added to 

the HA casting injectate. These particles were probably captured before entering the sinusoids 

because of their particle size and, hence, delineated the lobule boundaries. As illustrated in Fig. 

3, the dissected cube was oriented such that the origin (0,0,0) was at the center of the sample 

and its z axis was approximately parallel to the direction of the central vein (i.e. longitudinally 

according to the liver lobule schematic with a hexagonal prism-like geometry). In addition, its 

transections perpendicular to the z axis were located in the area which we considered to be in 

between the central vein and the HA and PV at the portal triads. This resulted in the r and θ axis 

being oriented along the radial and circumferential directions, respectively, according to the 

hexagonal transection of the lobule (Fig. 3). 

 

2.3 Mesh generation 

As we wish to assess the complete permeability tensor of the sample (see also 2.5), three 

computational fluid dynamics cases (and meshes) were developed corresponding to a 

simulation of flow in the r, θ and z directions, respectively. For each of the setups, a dedicated 

Figure 3. Dissection of the sample used for the numerical simulations: transectional (left) and longitudinal side 

(right) views of a hexagonal lobule with indications of the location of the dissected sample. A cube with dimensions 

(0.15 x 0.15 x 0.15 mm³) was dissected of a liver lobule. The dissected cube was oriented in such a way that its z 

axis was approximately parallel to the direction of the central vein (longitudinal according to the liver lobule). In 

addition, the r and θ axis were approximately oriented along the radial and circumferential directions, respectively, 

according to the hexagonal transection of the lobule.  

 



 

simulation geometry needed to be created. An inflow and outflow box was added (height being 

10% of the sample height) as a flow guidance proximal to the inlet and distal to the outlet, 

respectively (Fig. 2b). This was done to avoid convergence problems caused by too many inlets 

and outlets, as well as to avoid forcing a predefined flow through the inlet sinusoids [34]. 

The obtained surface geometries were processed using 3-Matic (Materialise, Leuven, Belgium) 

to provide good quality surface meshes of the fluid domain. First, “noise shells” were removed 

(e.g. a part of a bisected sinusoid which is not attached to the rest of the sinusoidal fluid 

domain). Subsequently, the meshes were improved by removing double or intersecting triangles 

and filling small holes which may originate from mesh manipulations. Next, the geometries 

were remeshed with a maximum triangle edge length of 1.2 µm to capture the morphological 

features of the geometries studied, followed by a quality preserving reduction of triangles. To 

this purpose, some channels with a very small diameter had to be refined because they would 

otherwise collapse during the remeshing procedure. In a last step, the surface meshes were 

further manually improved to result in a surface mesh of which all triangles had a skewness less 

than 0.6. The resulting surface meshes were then exported to TGrid (Ansys, Canonsburg, PA, 

USA) to generate volume meshes. The volume meshes consisted of tetrahedral cells with a 

maximal skewness less than 0.95. The resulting meshes existed of approximately 1 million 

triangular surface elements and 9 million tetrahedral volume elements clearly capturing the 

sinusoidal geometrical features (Fig. 2b).  

 

2.4 Computational fluid dynamics simulations & post-processing 

The steady and laminar computational fluid dynamics models were solved using Fluent (Ansys, 

Canonsburg, PA, USA). The inlet boundary condition consisted of a flat velocity profile at the top 

plane of the inflow guidance (plane defined by a r, θ, z coordinate equal to 90 µm for the r, θ, z 

flow simulation, respectively; see Fig. 2). Since there are, to the authors’ knowledge, no 

literature data available on the flow velocities in three orthogonal directions for the human 

hepatic microcirculation, the applied velocity was estimated by scaling down the total liver 

blood flow to the flow through the sample studied (eq. 1). This was done by using literature 

values of the average human liver blood flow Qliver (1450 ml/min), the average liver mass mliver 

(1.4 kg) [9], density  (1000 kg/m³ equal to water) and the dimensions of the sample studied 

(volume Vsample = 0.15³ mm³; area of inflow plane Asample = 0.15² mm²). Using eq. 2, this resulted 

in a velocity inlet v of 2.59·10-6 m/s. 

(1) 
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As outlet boundary condition, a pressure outlet of 0 Pa was used at the bottom (plane defined 

by a r, θ, z coordinate equal to -90 µm for the r, θ, z flow simulation, respectively; Fig. 2b). The 

lateral boundaries existing of transected sinusoids were set to symmetry boundary conditions 

implying no flux perpendicular to these planes. The sinusoidal lumen was modeled as a closed 

wall (no slip). Blood was modeled as an incompressible Newtonian fluid with a density of 1050 

kg/m³ and a dynamic viscosity µ of 3.5·10-3 Pa·s [23].  

Tecplot (Tecplot Inc., Bellevue, WA) was used to process, calculate and visualize the 

hemodynamic parameters of interest such as pressure difference, flow velocity, wall shear 

stress, flow trajectories, etc.  

 

2.5 Calculation of the permeability tensor  

Subsequently, the permeability tensor K (eq. 3; [35]) was assessed to quantify the permeable 

behavior of the sinusoidal perfusion in different directions for the dissected sample (Fig. 3). The 

permeability tensor defines the permeability of the tissue in the r, θ or z direction caused by the 

pressure difference in the r, θ or z direction. For instance, krθ specifies the permeability along 

the r direction due to the pressure difference in the θ direction [35].  

 

(3) 

The permeability tensor is calculated based on Darcy’s law, which describes the fluid flow 

through a porous medium (eq. 4 with P the pressure [Pa], µ the dynamic viscosity [Pa·s], k the 

permeability [m²] and v the velocity [m/s]). 

(4) 

Darcy’s law can be rewritten for every pressure difference direction separately inducing fluid 

flow in the r, θ and z direction. This is illustrated in eq. 5-7 for a pressure difference in the r 

direction with L [m] the characteristic length of the sample studied. 

 

(5) 

(6) 

(7) 

The velocity magnitude in eq. (5-7) can be calculated as the corresponding flow Q [m³/s] divided 

by the area A [m²]. This is illustrated in eq. (8-10) in which Darcy’s law is rearranged to calculate 

the corresponding permeability coefficients for the pressure difference in the r direction. 
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(8) 

(9) 

(10) 

 

For each of the 3 computational fluid dynamics cases (simulation of flow in the r, θ and z 

direction), fifteen cubic samples with a characteristic length of 50 µm were studied to 

determine the permeability tensor to allow for some statistical sampling of the simulated 

specimen. The cubes were defined by the coordinates as shown in Table 1. They were 

positioned such that they did not include the boundary regions, since the flow behavior in those 

regions is influenced by the prescribed lateral boundary conditions (symmetry; no flux). For 

every cubic sample, all permeability coefficients were calculated based on eq. (8-10). The 

pressure differences P were calculated by subtracting the mean pressure of the inflow plane of 

the studied cubic sample from the mean pressure of the outflow plane (eq. 11 for the r 

direction). 

(11) 

 
 

Cube rmin [µm] rmax [µm] θmin [µm] θmax [µm] zmin [µm] zmax [µm] 

1 -25 25 -25 25 -25 25 

2 -50 0 0 50 0 50 

3 0 50 0 50 0 50 

4 -50 0 -50 0 0 50 

5 0 50 -50 0 0 50 

6 -50 0 0 50 -50 0 

7 0 50 0 50 -50 0 

8 -50 0 -50 0 -50 0 

9 0 50 -50 0 -50 0 

10 -25 25 -25 25 0 50 

11 -25 25 -25 25 -50 0 

12 -25 25 -50 0 -25 25 

13 -25 25 0 50 -25 25 

14 0 50 -25 25 -25 25 

15 -50 0 -25 25 -25 25 
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Table 1. Coordinates of the cubes (characteristic length 50 µm) dissected from the simulation 

geometry (characteristic length 0.15 mm; Fig. 2b). These cubes were used to calculate the 

permeability tensor. The boundaries of the cubes are given by specifying the upper and lower 

limits of the r, θ and z coordinates, respectively. The origin (0, 0, 0) is located at the center of the 

sample dissected from the dataset (see also Fig. 3). 

 



 

The characteristic lengths L (50 µm) and areas A (2.5·10-3 mm²) were equal for all cubes, since 

they had the same dimensions. The flow Q in eq. 8-10 was calculated as the average flow of the 

volumetric flows through 5 parallel planes equally distributed over the length of the cube and 

perpendicular to the permeability direction studied. This was implemented in Fluent by writing 

journal files to obtain the necessary bounded planes.  

 

After calculating the permeability tensor for every separate cube, the mean, standard deviation 

and median values of all permeability coefficients were determined. The normality of the 

distribution of the permeability coefficients was verified by means of a Shapiro-Wilk test using 

SPSS (IBM, Armonk, New York, United States). 

 

Additionally, the principal axes (defined by the eigenvectors) as well as the permeability values 

in the principal directions were calculated from the permeability tensor K (see Appendix for the 

linear algebraic equations). This allows to quantify the angles between the original coordinate 

system axes and the principal axes of the permeability tensor. 

 

Finally, the 3D sinusoidal porosity was also determined (using Magics software) for every cube 

(as defined by the coordinates in Table 1) by dividing the volume occupied by the sinusoids by 

the volume of the cube studied (eq. 12). 

(12) 
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Results 

3.1 Computational fluid dynamics simulations: hemodynamic analysis  

The computational fluid dynamics simulation results are represented in Figs. 4-7. Figure 4 

illustrates the static pressure visualization on the boundaries of the 3 cases. The pressure 

differences over the cube along the r and θ flow directions are very similar (approximately 

ranging from 0 to 170 Pa and 0 to 180 Pa, respectively). In contrast, the pressure difference for 

the simulation of blood flow in the z-direction is clearly smaller (0-100 Pa), while applying the 

same boundary conditions as in the r and θ flow simulations (velocity inlet of 2.59·10-6 m/s at 

the top and zero pressure outlet at the bottom). 

 

 

 

 

 

 

 

 

 

 

 

As visualized in Fig. 4, the pressure drops significantly through certain sinusoids and stays 

almost constant throughout others. This corresponds to the typical presence of preferential 

pathways in the sinusoidal geometry along tracks with relevant pressure drops. Figure 5 depicts 

some of these preferential streamlines colored by their velocity magnitude. The preferential 

paths seem to be mainly concentrated in the middle region of the geometry, and not at 

locations near to the transected sinusoids delineating the lateral boundaries. This is obviously a 

consequence of the symmetry boundary condition applied at the sides. The velocity magnitude 

approximately ranges from 0 to 1.4·10-3 m/s, 0 to 2.6·10-3 m/s, 0 to 1.1·10-3 m/s for the case of a 

pressure difference in the r, θ, z directions, respectively. The mean velocity in all of these cases 

is typically at the lower end of these ranges as can be deducted from the streamlines in Fig. 5. 

Figure 4. Static pressure visualization on the boundaries of the 3 computational fluid dynamics models. The flow 

direction is from top to bottom (along the r, θ and z axis, respectively). The top plane was set to a velocity inlet, and 

the bottom plane to a pressure outlet. The pressure difference for the r and θ simulations are similar within a range 

of approximately 0 - 170 and 0 - 180 Pa, respectively. The z simulation pressure difference is typically smaller, 

ranging approximately from 0 to 100 Pa. 

 



 

 

 

 

 

 

 

 

 

 

Since the boundary conditions are likely to influence the solution, data of a smaller central cube 

of 50 µm (cube 1 as defined in Table 1) are further analyzed to minimize the boundary induced 

effects. The velocity magnitude in the smaller cube has a mean value of 1.0·10-4 m/s, 7.3·10-5 

m/s, 7.7·10-5 m/s for the r, θ, z flow simulations, respectively.  

For the major part of the model boundaries, wall shear stress remains below 1 Pa for each of 

the simulations (Fig. 6). At narrow channel locations, however, higher values are found. 

Histograms of the wall shear stress distribution for the central cube (cube 1 in Table 1) are 

depicted in Fig. 7. Overall, very low wall shear stresses cover the major part of the sinusoidal 

lumen surface. The mean wall shear stress in the central cube for the r, θ and z simulation was 

0.42 Pa, 0.31 Pa, and 0.28 Pa, respectively.  The corresponding local maximum wall shear stress 

was 6.62 Pa, 4.19 Pa, and 3.80 Pa, respectively.   

Figure 5. Visualization of the streamlines (color coded according to the velocity scale) in combination with the 

translucent pressure contours. The streamlines clearly indicate the preferential pathways followed by the fluid 

flow. In addition, the figures clearly illustrate higher velocities at locations where the sinusoids are narrow. 

 

Figure 6. Wall shear stress distribution color map visualized on the boundaries of the 3 computational fluid 

dynamics models. The flow direction is from top to bottom (along the r, θ and z axis, respectively). Wall shear 

stresses were typically very low in the major part of all simulation geometries. At the level of narrow channels, wall 

shear stress increased to higher values. 

 



 

 

 

 

 

 

 

 

 

3.2 Porosity and permeability tensor 

The sinusoidal porosity was calculated for every cube as defined by the coordinates in Table 1, 

and values are depicted in the last column of Table 2. The resulting mean porosity was 14.3% ± 

2.8%. 

The components of the permeability tensor for each of the 15 subsampled cubes are given in 

Table 2. As the Shapiro-Wilk test indicated that the distribution of the resulting permeability 

coefficients was not normal for 4 out of 9 coefficients (significance level of 0.1; see Table 2), the 

overall permeability tensor for the sample is best based on the median values (as shown in eq. 

13) to avoid a large influence of outlier values.  

 

(13) 

 

Calculating the eigenvectors of the permeability tensor as illustrated in the Appendix, resulted 

in the principal axes determined by the eigenvectors ( 1e


, 2e


, 3e


) in matrix V (eq. 14) and the 

corresponding diagonal matrix Kd with the permeability values along the principal axes (eq. 15).  
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Figure 7. Histograms of the wall shear stress distribution on the walls of a cube centrally located in the simulation 

geometry for each of the three models (flow in the r, θ and z directions). This corresponds to cube 1 as defined in 

Table 1. In all cases, wall shear stress was typically in the range of 0 to 1 Pa for the major part of the geometry. 

 



 

Cube krr [m²] kθr [m²] kzr [m²] krθ [m²] kθθ [m²] kzθ [m²] Krz [m²] kθz [m²] kzz [m²]  

1 3.80E-14 1.11E-14 -1.31E-14 -8.27E-15 1.88E-14 4.96E-15 -2.22E-14 -5.77E-15 3.66E-14 1.58E-01 

2 2.06E-14 1.47E-15 -1.21E-14 2.35E-15 2.65E-14 2.42E-14 -2.99E-15 6.77E-15 7.14E-14 1.74E-01 

3 3.57E-14 -6.39E-15 1.32E-14 3.86E-15 2.48E-14 1.12E-15 1.40E-15 2.08E-15 1.03E-14 1.82E-01 

4 7.93E-15 3.13E-15 -3.76E-15 7.11E-15 1.76E-14 -6.14E-15 -5.27E-15 -8.93E-15 3.68E-14 1.26E-01 

5 1.94E-15 1.11E-16 -1.23E-15 1.45E-15 2.87E-15 1.03E-15 -1.68E-15 1.88E-15 3.14E-15 1.10E-01 

6 1.78E-14 -5.34E-15 -7.63E-15 -8.17E-15 1.17E-14 3.05E-15 -1.63E-14 -3.11E-16 4.09E-14 1.35E-01 

7 6.95E-15 1.07E-15 -7.59E-15 -1.76E-15 3.95E-15 2.73E-15 -9.78E-15 2.38E-15 1.57E-14 1.23E-01 

8 5.25E-15 -7.04E-16 -1.34E-15 -9.26E-16 4.78E-15 -4.02E-16 -6.16E-16 1.61E-15 9.67E-15 1.36E-01 

9 3.11E-15 -1.23E-15 -2.21E-15 -6.28E-15 3.21E-15 1.22E-15 -1.61E-15 -1.50E-15 4.30E-15 8.60E-02 

10 2.51E-14 5.64E-16 7.57E-15 1.14E-15 2.38E-14 1.01E-15 -7.20E-15 -2.21E-15 3.43E-14 1.64E-01 

11 1.53E-14 -3.45E-15 -1.05E-14 -6.57E-14 6.93E-14 2.50E-14 -1.89E-14 2.32E-15 4.75E-14 1.80E-01 

12 1.24E-14 1.15E-14 -4.86E-15 2.02E-15 2.32E-14 -7.07E-15 -2.46E-15 -8.81E-15 1.04E-14 1.34E-01 

13 3.09E-14 5.17E-15 -5.45E-15 -4.88E-15 7.52E-15 3.48E-15 -2.46E-14 -3.27E-15 4.61E-14 1.63E-01 

14 1.82E-14 2.77E-15 -1.27E-14 -1.30E-15 2.62E-15 3.62E-15 -9.13E-15 -1.06E-15 1.03E-14 1.18E-01 

15 3.69E-14 7.76E-15 -1.67E-14 -4.68E-15 1.78E-14 5.56E-15 -1.31E-14 -4.65E-15 4.11E-14 1.57E-01 

Mean 1.84E-14 1.84E-15 -5.22E-15 -5.60E-15 1.72E-14 4.23E-15 -8.95E-15 -1.30E-15 2.79E-14 1.43E-01 

Stdev 1.25E-14 5.33E-15 7.93E-15 1.72E-14 1.69E-14 9.00E-15 8.31E-15 4.42E-15 2.02E-14 2.80E-02 

P-value 2.11E-1 5.82E-1 3.16E-1 6.73E-6 1.04E-3 1.31E-3 1.67E-1 5.98E-1 8.81E-2 6.15E-1 

Median 1.78E-14 1.07E-15 -5.45E-15 -1.29E-15 1.76E-14 2.73E-15 -7.20E-15 -1.06E-15 3.43E-14 1.36E-01 

 

 

 

 

Using these results, the angles between the original coordinate system axes and the principal 

axes were 19.5°, 5.4° and 18.9° for the r, θ and z axes, respectively. The principal axes 

coordinate system would thus be obtained by rotating the original orthogonal coordinate 

system approximately -19° around the θ axis. In addition, the permeability coefficients in the 

principal directions (diagonal coefficients of Kd) show that the permeability in the central vein 

direction (kd,33 = 3.64·10-14 m²) is higher than the corresponding permeabilities in the radial and 

circumferential directions (kd,11 = 1.56·10-14 m² and kd,22 = 1.76·10-14 m², respectively) which are 

almost equal.  

Table 2. Results of the permeability tensor and 3D porosity calculations. For each of the fifteen cubes as defined in 

Table 1, the permeability tensor K as well as the porosity  were studied. For every permeability coefficient and the 

porosity, the mean value, standard deviation, p-value resulting from the Shapiro-Wilk test and median were 

calculated. The 3D porosity is distributed around a mean value of 14.3%. 

 



 

Discussion 

In this paper, a numerical model of the human liver microcirculation has been developed based 

on a 3D image-based geometry of the liver sinusoids, and was used to study the fluid 

mechanical characteristics of perfusion at the sinusoidal level. The model presented in this 

study is, to the best of our knowledge, unique in its kind and provides a further step towards a 

more quantitative assessment of the perfusion properties of the liver microcirculation. 

 

The sample that formed the basis of the model was obtained from a cast of the human liver, 

and oriented such that - bearing in mind the functional liver lobule unit - the z-axis was 

approximately aligned parallel to the central vein. Our data indicate that the pressure difference 

in the z direction is typically smaller than those in the r and θ directions. Since the pressure 

difference can be interpreted as a degree of resistance to flow (given the same boundary 

conditions in all 3 cases), the resistance to flow is smallest in the z direction. This corresponds 

with the resulting diagonal permeability tensor Kd in which kd,33 is clearly larger than kd,11 and 

kd,22 (which are approximately equal), implying highest permeability of the liver lobule parallel 

to the direction of the central vein (kd,33). Radial (kd,11) and circumferential (kd,22) permeabilities, 

as seen in the plane of a hexagonal transection of a lobule, are of a similar magnitude (Fig. 3). 

Since rotating the original coordinate system -19° around the θ axes approximately equals the 

principal axes determined by the eigenvectors, this suggests that the orientation and 

corresponding coordinate system as applied in this study, are reasonably well aligned along the 

principal directions of permeability. The immediate result of these findings is that the sinusoidal 

circulation is clearly anisotropic. Consequently, the assumption of a homogeneous isotropic 

tissue seems insufficient to describe the porous behavior of the sinusoidal microvasculature.  

 

Given the fact that the study is based on one sample from one human liver cast, results should 

be interpreted as indicative and one should be reluctant to generalize our findings. More 

samples might allow a better estimation of these characteristics and identify potential regional 

heterogeneities in tissue properties of the liver under study, but imply a very labor-intensive 

procedure to acquire good geometries and meshes. Consequently, only one sample was 

studied, of which, however, subsamples were used to characterize the permeability of liver 

tissue. Care was taken to make sure that the sinusoidal heterogeneity was sufficiently covered 

when selecting the sample to study. A cube with dimensions of 0.15 x 0.15 x 0.15 mm³ seemed 

to be sufficient to capture the heterogeneity of tortuous and interconnected sinusoids. 

 

In the process of developing the computational fluid dynamics model geometry, it was 

inevitable to make compromises and take decisions that have an impact (which we tried to 

minimize) on the simulation results. Some sinusoids, for instance, were cut when dissecting the 



 

cubic sample. As a consequence, these transection planes of bisected sinusoids had to be 

defined as a boundary condition. Symmetry conditions were applied resulting in no flux through 

the boundary sections. However, in reality these sinusoids are continuous and flux is possible. 

To minimize the influence of these boundary induced effects on the results, we limited the 

quantitative analyses to cubes at a certain minimal distance (25 µm which is equal to 16.6% of 

the characteristic length of 0.15 mm) from these boundaries (Table 1).  

 

In this study, blood is modeled as an incompressible and Newtonian fluid with a constant 

density and dynamic viscosity. It is, however, known that the hemodynamic behavior of blood at 

the microcirculation level is different from the behavior at the macrocirculation level (non-

Newtonian fluid, Fahraeus-Lindqvist effect [36]). However, the assumption of an incompressible 

and Newtonian fluid is justified for this study, since we are interested in investigating the 

permeability tensor, which is independent of the fluid studied, because permeability is a purely 

geometrically determined parameter. The reported shear stress levels, on the other hand, might 

not fully reflect the hemodynamic stress exerted by the blood in-vivo. Note, however, that they 

might be indicative of shear stress exerted by blood-mimicking liquids upon machine perfusion 

of isolated organs for transplantation. 

 

Our model and results can be compared with some studies based on idealized microcirculation 

models, in particular the 2D models of Ricken et al. [29] and Bonfiglio et al. [30]. However, both 

2D models lack one dimension which has a non-negligible influence on the resulting flow 

behavior. The model of Ricken et al. [29] does take into account longitudinal sections of 

idealized lobules with the central veins and hepatic arterioles, while modeling the liver 

microcirculation using a biphasic approach. On the contrary, the model of Bonfiglio et al. [30] 

focuses on the hexagonal transection of a liver lobule to build a porous medium model of the 

liver microcirculation. In this study, a porosity estimate ( = 12%) based on brain tissue imaging 

[37], was used to calculate the corresponding sinusoidal permeability. This value is somewhat 

lower than the porosity acquired in our study (14.3% ± 2.8%).  

 

The results of our study can lead to new, improved models using porous media to simulate the 

behavior of the liver microcirculation taking into account the anisotropy. Moreover, these 

models could also be applied to liver perfusion settings other than the natural blood flow, such 

as the hemodynamic conditions experienced by the microcirculation in the case of liver 

pathologies, treatments and transplantation procedures such as machine perfusion 

preservation, ischemia reperfusion… 



 

Conclusion 

Vascular corrosion casting and micro-CT scanning allowed to construct a 3D numerical 

microcirculation model of a human liver. Our data indicate that the human hepatic 

microcirculation clearly displays anisotropic behavior in terms of permeability, which was 

quantified by means of a permeability tensor. In particular, a higher permeability was 

demonstrated along the direction of the central vein, and about two times lower but 

approximately equal permeabilities along the radial and circumferential directions of the liver 

lobule. Since the permeability coefficients depend on the flow direction, liver microcirculation 

models should take into account sinusoidal anisotropy. 

 

In conclusion, this model helps to gain more insight into the complex liver microhemodynamics. 

Towards the future, it is applicable to study the hepatic microcirculation in several 

(un)physiological and pathological conditions (e.g. machine perfusion, portal hypertension, 

cirrhosis, etc.). 

 

 

Acknowledgments 

This research was supported by the Agency for Innovation by Science and Technology in 

Flanders (IWT), Belgium. The authors would also like to thank Valeer Desmet, Frédéric Maes, 

Jennifer Siggers and Rodolfo Repetto for their contributions. 



 

Nomenclature 

 

2D  = 2-dimensional 

3D  = 3-dimensional 

A [m²]  = area 

CT  = computer tomography 

HA  = hepatic artery 

HV  = hepatic veins 

K  = permeability tensor 

KOH  = potassium hydroxide 

L [m]  = length 

P [Pa]  = pressure 

PV  = portal vein 

Q [m³/s] = flow 

V [m³]  = volume 

1e


  = eigenvector 

k [m²]  = permeability coefficient 

m [kg]  = mass 

v


  = velocity vector 

α *°+  = angle 

  = porosity 

λ  = eigenvalue 

µ [Pa·s] = dynamic viscosity 

 [kg/m³] = density 

 



 

Appendix: calculation of the principal axes of the permeability tensor 

To determine the principal axes and principal permeabilities of tensor K, the eigenvalues as well 

as the eigenvectors had to be calculated. As illustrated in Liakopoulos et al. [35], a permeability 

tensor has to be a symmetric matrix. Accordingly, a real symmetric matrix has real eigenvalues 

and real eigenvectors corresponding to an orthogonal coordinate system representing the 

principal axes [38]. As such, the symmetric part of K was defined by calculating the mean values 

of the off-diagonal coefficients as illustrated for krθ and kθr in eq. 16. This operation resulted in a 

symmetric matrix Ksymm as defined in eq. 17. 
 

(16) 

 

(17) 

Subsequently, the eigenvalues (λ1, λ2, λ3) were calculated by solving the characteristic 

polynomial of Ksymm (eq. 18), and accordingly, the eigenvectors ( 1e


, 2e


, 3e


) being the directions 

of the principal axes belonging to Ksymm, were determined (eq. 19). 
 

 

(18) 

 

(19) 

Using the eigenvectors (columns of matrix V; eq. 20), Ksymm was diagonalized resulting in the 

diagonal matrix Kd (eq. 20). This matrix represents the principal permeabilities belonging to the 

principal axes defined by the eigenvectors. 
 

(20) 

Knowing the eigenvectors and accompanying diagonal matrix, we were able to calculate the 

angles between the predefined coordinate system (r, θ, z) and the resulting principal axes 

(defined by the eigenvectors). This is illustrated in eq. 21 for the angle α between the r axis and 

1e


. 

(21) 
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