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Study Design: In Vivo Animal Study 
 
Objective: To develop and evaluate a new interdisciplinary approach for the 3D analysis of 
spinal growth modulation as a novel method for fusionless scoliosis treatment. 
 
Summary: Scoliosis has for a long time been recognized as a three-dimensional (3D) deformity; 
still 3D morphological analyses are scarce. The third dimension is however critically important, 
but it presents a great challenge due to the classical two-dimensional (2D) radiographic view. 
This study introduced scoliosis by anterolateral spinal tethers in a mini-pig model. Classical 2D 
measurements off the plane X-Rays/CT were compared to 3D CT reconstructions. Our new 3D 
approach for advanced imaging analysis showed subtle difference between the 2D and 3D 
assessments.   
 
Introduction: Most previous research concentrated on 2D geometrical analysis determined by 
plane X-Rays. The objective of this study was to quantify 3D spinal deformation and to compare 
with 2D measurements. In particularly: 1) the reproducibility of each method; 2) the inter-
method correlation; and 3) advanced 3D scoliosis curve quantification were explored. 
 
Methods: Twelve seven month old mini-pigs received anterolateral thoracic vertebral screws in 
four	consecutive	thoracic vertebrae (T8 to T11). In six of the animals screws were connected by a 
polyethylene tether across three adjacent motion segments, while six animals received sham only 
surgeries. For the 2D evaluation, X-Rays and 2D CT scans at 6mo post-operative (OP) were used 
to measure scoliosis and kyphosis Cobb angle, vertebral body (VB) and intervertebral disk (IVD) 
space wedging, anterior, posterior, left and right disc height. Using Mimics, CT images were 
segmented semi-automatically and 3D surfaces reconstructed. Custom MATLAB application 
was used to assess from the 3D reconstruction automatically the same parameters as specified in 
the 2D analysis. Additionally, maximal plane of deformation, maximum Cobb angle, maximum 
VB and IVD wedging off the 3D were documented. Further, CT and MRI reconstructions 
allowed for the evaluation of growth plate and disc, respectively, which is not possible under 
conventional 2D techniques. 2D reproducibility was determined by performing all measurements 
by two independent researchers at 2 different occasions. The inter- and intra-class correlation 
(ICC) was determined. Linear regression determined the inter-method correlation between the 
2D and 3D results. The means from each correlation were compared by repeated ANOVAs.  
 
Results: Radiographs, 2D and 3D CT images demonstrated significant three-dimensional 
deformity creation in the tethered animals compared to sham controls. There was excellent 
correlation of 2D and 3D measurements when evaluating the coronal and sagittal Cobb angle. 
Inter- and intra- class correlation was also very high for the Cobb measurements, indicating good 
reproducibility of the results.  The correlation between 2D and 3D measurement methods is good 
for the most other parameters. Care has to be taken when created deformity is very large and 
deviation between local (vertebra) and global coordinate system increases. In such cases, 2D 
views don’t allow for accurate capture of the 3D characteristics and lead to larger errors as seen 
in the evaluation of the vertebra body wedging.  Disc heights measured from 3D MRI were in the 
sham group (1.87±0.07mm) significantly higher when compared to the tethered group 
(1.65±0.1mm). In particularly, the anterior right and left sectors were significantly reduced in the 
tethered group.  



3D Analysis of Novel Scoliosis Treatment  Glaser et al. 

3 

Conclusion: 3D results show subtle deviation from 2D measurements, even though there is a 
correlation between both methodologies. The small angles involved make 2D evaluations are 
very sensitive to the lines drawn by the user on the radiographic films, which resulted in large 
intra- and inter-observer variation, particularly when evaluating vertebra body wedging. The 
automated procedure, associated with the 3D analysis, allows for a more consistent selection and 
is not biased by the user. In addition, 2D measurements are dependent on the plane at which the 
image was taken. The maximal plane of deformation frequently is located outside the plane 
coronal or lateral view. Previous clinical and in vivo animal research concentrated on the 2D 
geometrical changes as determined by plane radiographs. New evaluation values were possible 
when extending the analysis into the 3D space. The 3D view of the system allowed for analysis 
of the screw placement accuracy and for identification of the maximal plane of deformation, both 
of which are not possible with either of the 2D methods. Our new 3D advanced imaging 
techniques will allow for better description of spinal deformities.  
 
 
Key words: CT, microCT, scoliosis, AIS, 3D reconstructions, anterolateral flexible tether, 
fisionless scoliosis treatment, spinal growth modulation 
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progression without hope of lasting correction. An alternative treatment option that harnesses the 

remaining growth of the spine to permanently correct the deformity, prevent further progression, 

preserve spinal flexibility and allow further growth, is becoming an appealing option that would 

substantially improve the quality of life of those with spinal deformities. Fusionless surgical 

techniques have emerged that aim to correct deformities by modulating the growth of the spine 

(Fig. 1). Currently, the mechanism of modulating spinal growth is not well understood, which 

lead to the rationale of the present study. We evaluated a clinically relevant fusionless scoliosis 

implant on a large animal model while inducing a spinal deformity (inverse approach to 

correcting scoliosis) and analyzing the short-effects on each component of the spine.  

Preclinical data in an immature animal model is an important step towards developing a new 

standard of treatment. In the present study we utilized a potential device and a strategy that is 

applicable to the correction of scoliosis in growing children and adolescents by 

modulating/redirecting the growth of the scoliotic spine. The rationale for using deformity 

creation to assess device efficacy is due to the lack of an animal model with naturally occurring 

scoliosis. Therefore, normal animal spines will have these fusionless devices implanted to 

modulate their spinal growth and create, rather than correct, deformity (Fig. 2). The clinical 

application would be the inverse analog, where a child with scoliosis would have the optimal 

fusionless device implanted to modulate their spinal growth and correct existing deformity (Fig. 

1). Although, it is not  clear  that  the  mechanisms  that  create  deformity  in  an animal model 

will be identical to those required to correct scoliosis in a patient, we believe the responses of the 

vertebral body and intervertebral disc to tethering will in fact be similar to the clinical condition. 

Although methods to create scoliosis in animals (goats) 38 do exist, the technique involves first 

tethering the spine posteriorly to create the “scoliosis”. Thus mechanisms to correct a deformity 
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scoliosis model38. Recent clinical studies show feasibility of vertebral body stapling for scoliosis 

treatment suggesting at least stabilization of progressive scoliosis39,40 (Fig. 3B). 

A different fusionless treatment option using a flexible tether mechanism has been suggested and 

preliminarily investigated by Newton et al. 24,29-31. The tether applies similar principles of 

mechanically harnessing and redirecting the growth of the spine as seen in the long bone staple 

technique (Fig. 3C). The load application through a flexible instead of rigid implant promises 

better initial (IVD) and ultimate (VB and IVD) correction in all planes when compared to a more 

rigid staple. Preserved long term disc health may be anticipated as motion, particularly torsion, is 

allowed while the tether is in place. Placement of vertebral body screws anterolaterally within 

the vertebra using minimally invasive thoracoscopic methods is well described approach for 

spinal fusion. Clinical application would also utilize this minimally invasive approach. 

Preliminary studies show very encouraging results with predictable growth modulation and 

deformity creation in large animal models (approximating the magnitude of idiopathic scoliosis 

clinically)24,29-32. Other research groups found the tether to provide greater shape changes and 

better fixation than the staples, and histological evidence of fibrous tissue around the staple tines, 

adding strength to our assumption of greater efficacy and integrity of the tether when compared 

to the rigid staple33,35,37. 

Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers 

theoretical advantages over current forms of treatment. As the etiological pathway underlying 

scoliosis remains unclear, it requires a 3D interdisciplinary analysis incorporating a range of 

physiological assessments. 
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discs have a nucleus that consists primarily of notochordal cells as opposed to the mixture of 

notochordal cells and fibrous matrix that is found in immature human discs53,54. (2) Yucatan 

mini-pigs (akin to all vertebrates, excluding humans) have vertebrae with ossified and 

vascularized epiphyseal plates54. Consequently, the porcine disc and the physis do not compete 

for nutrition by the vertebral endplate pathway, potentially making the porcine intervertebral 

discs less susceptible to degenerative changes54. Despite these limitations, since the vertebral55 

and disc56 morphology and growth rate approximate juvenile and adolescent humans as closely 

as any animal model, the Yucatan mini-pig is an optimal choice for modeling the immature 

human spine and quantifying the impact of growth modulating implants. 

Specimens 

Twelve seven-month old mini-pigs were instrumented with anterolateral thoracic vertebral 

screws in four consecutive thoracic vertebrae. In six of the animals screws were connected by a 

polyethylene tether across three adjacent motion segments, while six animals received sham only 

surgeries (Fig. 5). Animal Care and Use Committee approved study were approved prior to study 

begin. Sample size was based on a power analysis of previous data on this model for deformity 

creation (power = 0.8). Instrumentation sites were prepared over four vertebral levels from T8-

T11. At each vertebral body, the overlying pleura were incised and the segmental vessel 

cauterized. Each segment was then instrumented anterolaterally (on the right side) with one 

specially designed vertebral staple and screw (with a maximum outer diameter of 9 7.5mm and 

length of 35mm; DePuy Spine Inc., Raynham, MA). During implantation, neither the discs nor 

growth plates were disturbed. In six animals, the vertebral body screws were aligned and an 

ultra-high molecular weight polyethylene (UHMWPE) ribbon tether (cross section, 1.5 x 7.5mm) 

was placed and fastened to the screws, connecting the four vertebrae (Tether Group). All tethers 
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For the x-ray and 2D measurements, repeated measures analyses of variance (MANOVA) were 

utilized to compare tethered and sham group.  This includes vertebra body and disc space 

wedging, and disc space heights. Additionally, the inter- and intra-observer agreement regarding 

the measurements from x-ray and 2D CT was assessed with the use of the intra- and inter-class 

correlation coefficients to identify the repeatability and reliability of the 2D method. Similarly, 

all parameter extracted from the 3D reconstructed models were statistically evaluated to 

determine differences between tethered and sham group using MANOVA and p-value of 0.05. 

Furthermore, regression analysis using the least square approach was performed to determine the 

relationship between the different parameter extracted from the different techniques (x-ray vs. 

2D CT, x-ray vs. 3D CT, and 2D vs. 3D CT).   

RESULTS 

Global Deformation 
Two-dimensional x-ray (p=0.01) and 3D CT (p=0.045) resulted in significantly increased Cobb 

angle in the coronal plane in the tethered group, while the sagittal alignment was maintained with 

no difference between the groups (Fig. 14 left). There was no significant difference between the 

x-ray and 3D CT results. The maximum Cobb calculated from the 3D CT was larger than the 

individual coronal and sagittal plane angles (17.4±4.8 and 27.4±5.4 for the sham and tethered 

group, respectively) and was on average 32 off of the local vertebrae coronal lateral axis 

(roughly in the middle between the DV and lateral plane views). X-ray and CT Cobb angles in 

both planes showed excellent correlation (Fig. 14 right, R2=0.93/0.66 for DV/Sag Cobb 

respectively) 
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Instrumentation 
The 3D view of the system allowed for the analysis of the screw placement, which is not possible 

with either of the 2D methods. We found no significant difference between the tether and sham 

group screw positioning in terms of angle and offset, assuring consistence and accuracy in the 

screw placement. This analysis also allowed for evaluating of the wedging parallel and 

perpendicular to the screw long-axis. Tethered group wedging parallel to the implanted screw 

resulted in significantly lower disc wedging when compared to the sham group.  

Intra- and Inter-Observer Correlation 
The reproducibility of each method was tested with the inter- and intra-class correlation (ICC). 

Two observers performed all measurements at two different occasions, allowing for the 

identification of the inter- and intra-observer variation. The coronal and sagittal plane Cobb 

angle measured on the plane x-rays resulted in very high ICC (>0.97). However, ICC was very 

low for the vertebral body (0.093) and disc wedging (0.048), showing inconsistent results when 

evaluating those parameters on plane x-rays. 2D CT evaluation resulted in better reproducibility 

(ICC=0.5 for the VB and 0.4 for IVD). The disc height results based on the x-rays resulted in 

inconsistent ICC ranging from 0.1 to 0.9. 2D CT measurements were more consistent (ICC=0.4-

0.8). 

DISCUSSION 

The present study assessed the creation of 3D deformity created from a novel fusionless implant. 

We found greater Cobb angle in the tethered (treated) group when compared to a sham (control) 

group. The instrument created a complex 3D deformity requiring 3D analysis for complete 

understanding. 
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X-ray Cobb angle results correlated very well with 3D measurements. Inter- and intra- class 

correlation was also very high for the Cobb measurements, indicating good reproducibility of the 

results. X-rays and 3D CT reconstructions are both very well suited for the analysis of global 

spinal deformity such as the Cobb angle. 3D reconstructions add additional planes to view the 

results, such as the identification of the plane of maximal deformation. This evaluation is not 

possible by a 2D means and adds valuable information to be considered when reviewing 3D 

deformity.  

Axial rotation determined by 2D and 3D CT showed correlation for most of the levels, however, 

within the tethered group the instrumented levels were negatively correlated between both 

measurement techniques. This is related to the fact that during the 2D CT measurements the user 

has to select a plane to perform those measurements. The axial cuts within the 2D CT are based 

on the global CT coordinate system. A spine that is deformed heavily has its vertebra local 

coordinate system rotated away from the global CT machine coordinate system, resulting in a 

greater error within the measurements associated with the 2D technique. The 3D reconstruction 

allows viewing the spine in the 3D space and creating true local coordinate axes for the 

calculations. 

For the measurements of VB wedging, the lines drawn by the user at a regular x-ray result in 

greater variation and inconclusive results. CT measurements are recommended when evaluating 

VB wedging. For the intervertebral disc analysis, all techniques resulted in similar trends with a 

good correlation between each of the techniques. 

New evaluation values were possible when extending the analysis into the 3D space. The 3D 

view of the system allowed for analysis of the screw placement, which is not possible with either 

of the 2D methods. This allowed for the evaluation of the accuracy of the screw positioning and 
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orientation for each of the groups. It also makes it possible to view disc and vertebra wedging 

among other variables in the plane parallel to the axis of the screw and find changes that may 

otherwise remain undiscovered. 

In summary, the results of this study confirm that 3D analysis using CT, MRI and μCT is 

reproducible and reliable to determine changes in complex 3D deformities. The correlation 

between 2D and 3D measurement methods is good for the most parameters. Care is to be taken 

when created deformity is very large and deviation between local and global coordinate system 

increases. In such cases, 2D views don’t allow for accurate capture of the 3D characteristics and 

lead to larger errors. However, the sequential measurement of deformity parameters in the course 

of a study is required because of its cost effectiveness. The accurate measurement extracted from 

3D reconstructions can complement the analysis and add additional information to improve the 

understanding of a complex 3D deformity. Zonal analysis of disc from MRI and disc space from 

CT also proved to be very useful and revealed a trend for a region-dependent loss of disc height 

in the tethered group.  
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