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Abstract

In the modelling process of cardiovascular diseases, one often comes across the numerical simu-
lation of the blood vessel wall. When the vessel geometry is patient-specific and obtained in vivo via
medical imaging, the stress distribution throughout the vessel wall is unknown. However, simulating
the full physiological pressure load inside the blood vessel without incorporating the in vivo stresses
will result in an inaccurate stress distribution and an incorrect deformation of the vessel wall. In
this work a computational method is formulated to restore the zero-pressure geometry of patient-
specific blood vessels, and to recover the in vivo stress field of the loaded structures at the moment
of imaging. The proposed backward displacement method is able to solve the inverse problem itera-
tively using fixed point iterations. As only an update of the mesh is required, the formulation of this
method allows for a straightforward implementation in combination with existing structural solvers,
even if the structural solver is a black box.
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1 Introduction

Numerical analyses of the cardiovascular system are able to provide medical researchers with informa-
tion that cannot (easily) be measured in a clinical setting and may contribute to a better comprehension
and insight into the pathophysiology of cardiovascular diseases. In addition, numerical models offer
a computational environment in which both new and existing medical procedures and devices can be
tested and optimized, which is both cost effective and patient friendly. The continuous improvement of
computational methods, computational power and medical imaging techniques encourages the general
belief that computational models will eventually be used in clinical practice, with a trend toward more
realistic, patient-specific models. These models cannot do without non-invasive medical imaging tech-
niques such as X-ray computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound
imaging which not only allow for accurate in vivo visualization of 3D patient-specific geometries, but
also provide information about wall thickness and wall motion. The in vivo data can be used to gener-
ate and validate the computational structural dynamics (CSD) model and to fit material parameters of
a constitutive law to mimic the patient-specific behaviour of the aortic wall [1]. When the interaction
between the blood flow and the arterial wall is taken into account, MRI and ultrasound provide valuable
information for patient-specific boundary conditions of the fluid domain in a fluid-structure interaction
(FSI) simulation.

It is important to realize that, at the moment of medical image acquisition, a physiological pressure
load is present in the arterial system. When using the in vivo obtained patient-specific geometry to model
the arterial wall, this arterial structure therefore does not correspond to the unloaded configuration and
there is an in vivo stress and strain field present in the vessel wall. Neglecting their presence results
in incorrect values for the stress and the deformation when simulating the internal pressure load inside
cardiovascular structures in general and inside cerebral and aortic aneurysms in particular [2, 3, 4, 5, 6].

It is not possible to measure (in vivo) the unloaded configuration of the blood vessel or the stress
distribution throughout the arterial wall. However, when the in vivo measured geometry and the cor-
responding blood pressure at the moment of imaging are known, an inverse problem can be defined to
solve for the zero-pressure geometry or the in vivo stress field. Note that this inverse problem and its
solution methods to reveal the load free configuration are not limited to the field of biomechanics. For
example in mechanical production and design applications, the desired shape of manufacturing tools,
gaskets, rubber seals and even turbine blades has to be reached under loading conditions [7, 8, 9].

In this paper a fixed point method is presented to solve for the zero-pressure geometry by iteratively
updating the nodal coordinates of the geometry towards the unknown unloaded configuration. As only
an update of the nodal coordinates is required, the method in section 2 allows for a straightforward
implementation in combination with existing finite element solvers, even if the solver is a black box
and there is no access to the source code. In section 3 the zero-pressure geometry is calculated for two
different models. Applying the measured arterial pressure in a forward analysis fully recovers their in
vivo measured geometry and restores their in vivo present stress state.

2 Methods

2.1 Problem description

Before defining the inverse problem, a general forward problem is formulated. Therefore, we define a
stress free reference configuration by

Ω(X,0) (1)

in which X denotes the material coordinates of the undeformed reference geometry, and where the
second argument of the configuration Ω refers to the zero-stress state that corresponds to this unloaded
reference configuration. Then, a forward analysis can be defined as the calculation of the equilibrium
configuration

Ω(x,σ) (2)
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Figure 1: Schematic representation and notations.

with x the coordinates of the deformed geometry and σ the second-order stress tensor. As shown in
Figure 1, this deformed configuration results from a pressure load p, applied at the inner surface of the
undeformed blood vessel wall,

p = −τ .n = −(σ.n).n

with n the outward unit normal vector, and a zero traction vector (τ = 0) at the outer surface of this
undeformed reference state . Furthermore, the nodes at the ending cross sections are only allowed to
move in radial direction with respect to the local centerline{

Uθ = 0

Uz = 0
(3)

To be in equilibrium, the equilibrium conditions, the compatibility requirements and the presence of
an appropriate material model, which sets the relation between the stress field and the strain field, are
satisfied. The equilibrium configuration (2) can be computed by a structural solver, which we denote by
S. Using these definitions, we define the forward analysis by

Ω(x,σ) = S(Ω(X,0), p) (4)

The deformation can be defined by the forward mapping Φ : X 7→ x and the deformation gradient
tensor F

x = Φ(X) (5a)

F =
∂x

∂X
=
∂Φ(X)

∂X
(5b)

The inverse or backward problem calculates the undeformed reference geometry that corresponds to
a given geometry, which is deformed due to a pressure load. Therefore, in Figure 1, we now assume{

X = X∗

σ = σ∗
,

{
x = xm

p = pm

whereX∗ and σ∗ are the zero-pressure geometry present in the undeformed reference configuration and
the stress state present in the in vivo configuration, i.e. the unknown variables of this inverse problem.
The in vivo geometry xm and the internal pressure load pm are the known input parameters for the
inverse problem, where the subscript m refers to (in vivo) measurements.

Then, the backward problem can be formulated as follows:
Find the in vivo configuration

Ω(xm,σ
∗) (6)
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which is yet unknown as only xm is known and σ∗ is not, and which is in equilibrium with the mea-
sured internal pressure load pm, the zero traction at the outside and the kinematic Dirichlet boundary
conditions (3). Therefore, find the corresponding undeformed reference configuration

Ω(X∗,0) (7)

so that the in vivo equilibrium configuration (6) can be found by imposing the in vivo measured pressure
pm onto the zero-pressure reference configuration (7) in a forward analysis (4)

Ω(xm,σ
∗) = S(Ω(X∗,0), pm) (8)

Equation (8) results in the stress tensor field σ∗ which is defined as the prestress introduced by the
forward analysis or the in vivo stress accompanying the in vivo image-based geometry. The unloaded
reference geometry can be written as

X∗ = φ(xm) = Φ−1(xm)

in which φ : x 7→ X denotes the inverse deformation mapping. This allows to obtain the original in
vivo geometry at the moment of imaging xm using the in (5a) proposed forward deformation of the
zero-pressure geometryX∗

Φ(X∗) = Φ(φ(xm)) = Φ(Φ−1(xm)) = xm

2.2 Backward displacement method

This paper proposes a method to solve for the zero-pressure geometry and the in vivo stress state by
means of fixed point iterations. The algorithm makes use of a forward analysis to update the approxi-
mate zero-pressure geometry, while evaluating the residual as the maximum distance that is still present
between the image-based geometry and the geometry resulting from this forward problem. When con-
vergence is reached (i) a zero-pressure geometry is found and (ii) the resulting in vivo measured geome-
try is recovered and in equilibrium with an in vivo stress field and the in vivo load. Furthermore, only the
nodal coordinates of the mesh need to be updated before every iteration, allowing for a straightforward
implementation in combination with existing structural solvers, even if the solver is a black box and no
access is granted to the source code (as is the case with most commercial packages).

Algorithm 1 FIXED POINT ALGORITHM TO RECOVER THE ZERO-PRESSURE GEOMETRY AND THE IN

VIVO STRESS TENSOR FIELD

1: i = 0
2: X1 = xm
3: while i = 0 or rimax ≥ ε do
4: i = i+ 1
5: Ω(xi,σi) = S(Ω(Xi,0), pm)
6: U i = xi −Xi

7: Xi+1 = xm −U i

8: end while
9: Zero-pressure reference geometryX∗ = Xi

10: In vivo stress tensor σ∗ = σi

The fixed point algorithm to recover this zero-pressure geometry and the in vivo stress tensor field is
shown in Algorithm 1. It starts by initializing an approximation for the zero-pressure geometry Xi=1.
As initial guess, the original image-based geometry xm is chosen. Then, a fixed point-based iterative
procedure is performed until convergence is reached. First, the structural solver calculates an equilibrium
configuration Ω(xi,σi) from the intermediate reference configuration Ω(Xi,0) loaded with the full in
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vivo pressure load pm. The displacements of the material points in the forward analysis are denoted by
U i. Finally, the approximation of the zero-pressure geometry (Xi) is updated by subtracting the nodal
displacements U i from the original image-based coordinates xm. This procedure leads to an update of
the mesh Xi+1 (step 7 in Algorithm 1) which is used in the next iteration or, if convergence is reached,
to the zero-pressure geometryX∗. Furthermore, the forward analysis calculates the stress state σi (step
5 in Algorithm 1) which is left unused throughout the algorithm but represents the in vivo stress tensor
σ∗ present in the in vivo measured geometry upon convergence. The residual

rij = ‖xm,j − xij‖2 , ∀j ∈ [1, N ] (9)

is defined as the distance between the coordinates of the jth node in the ith deformed geometry xij and
in the original image-based geometry xm,j . Where ‖.‖2 stand for the L2-norm and N represents the
total number of nodes in the model. Convergence is reached when the maximum residual

rimax = max
j∈[1,N ]

{rij} (10)

is lower than the convergence criterion ε.

2.3 Existing solution methods

Besides the method proposed in this paper, there exist other techniques to incorporate in vivo stress into
computational models of the cardiovascular system, given the in vivo image-based geometry xm and
internal pressure load pm.

Raghavan et al. were the first to take into account a non-invasively determined zero-pressure ge-
ometry in the numerical modelling process of an abdominal aortic aneurysm (AAA) [10]. Therefore,
they developed an optimization framework for the parameter k such that the coordinates of the unknown
zero-pressure reference geometry X∗ can be approximated by (xm − kU), where U represents the
nodal displacements that result from a single forward calculation in which the lumen pressure load is
applied onto the in vivo measured reference geometry xm.

Lu et al. introduced the inverse elastostatic method, originally described by Govindjee and Mihalic
[7, 8], to the field of cardiovascular biomechanics as another way to calculate the zero-pressure geometry
[2]. The implementation, however, requires access to the finite element code what can be seen as a
drawback.

Gee et al. implemented previous strategy as the Inverse Design (ID) method, and compared this
prestressing technique with another method, the so-called Modified Updated Lagrangian Formulation
(MULF) [4, 11]. The methodology used, is similar to the Backward Incremental (BI) method intro-
duced by de Putter et al. [3]. In contrast to the backward displacement method, described in this paper,
the zero-pressure geometry is not calculated directly but the equilibrium configuration Ω(xm,σ

∗) is
computed instead. By incrementally increasing the pressure load towards the full in vivo pressure pm
while discarding the corresponding deformations (xi = xm) a prestressed (σ∗) and prestrained con-
figuration is generated. The procedure calculates the new stress tensor field σi that will be used at the
next increment by loading the ith non-equilibrium configuration Ω(xm,σ

i−1) with the incrementally
increased internal pressure (pi = pi−1 + δpi). As such, the stress tensor gets updated towards the in vivo
stress tensor and the strain tensor gets implicitly updated by a multiplicative split of the deformation gra-
dient tensor F 0,i = F 0,i−1.F i−1,i [5, 12]. Afterwards, the zero-pressure geometry can be constructed
by reducing the luminal pressure to 0 Pa [13]. According to [3] the last pressure increment has to be
chosen extremely small to return a final equilibrium configuration. The method allows the use of a black
box structural solver if the finite element code is able to update the initial stress tensor field with each
iteration. A similar approach of prestressing was used earlier by Pinsky et al. to include the internal
stress state in the cornea under the presence of the full intraocular pressure load through a fixed point
iteration instead of increasing the pressure incrementally [14].

As the effect of viscous forces would be small, the zero-pressure geometry or the in vivo stress state
resulting from one of the above methods, which only involve a structural model of the cardiovascular
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region of interest, can also be used in FSI models. Bazilevs et al., however, report that the viscous
effect is not negligible and account for the viscous traction caused by the blood flow when solving the
balance of linear momentum for the solid [15]. Therefore, a separate steady flow CFD simulation with
rigid walls is performed to obtain the fluid traction vector. After the iterative calculation of the prestress
component S0 of the additive decomposition (S + S0) of the second Piola-Kirchhoff stress tensor it is
used as initial stress in their in vivo geometry-based FSI model [16].

3 Examples

This section focuses on two examples. In the first example a simplified model of a small artery is
used for validation purposes and to evaluate the importance of the correct stress incorporation in the
in vivo measured geometry. The second example concerns a mouse-specific abdominal aorta with four
side branches to explore the ability of the backward displacement method to restore a more complex
cardiovascular structure at its zero-pressure state. In both examples the calculations were performed
using the commercial finite element analysis software Abaqus/Standard (Simulia). However, as stated
earlier, any other structural mechanics solver can be used using any discretization method, element types
and shape functions.

3.1 Example 1: in vivo stress incorporation in a thick-walled cylinder

A small unloaded artery is modelled using a straight cylindrical tube with a length of 10 mm, an inner
radius of 0.5 mm and a wall thickness to diameter ratio of 0.15. The boundary conditions only allow a
radial displacement at the ending cross sections. The geometrical model is discretized using 64× 32× 4
quadratic hexahedral elements with reduced integration and a hybrid formulation. The vessel wall be-
haviour is modelled by an incompressible isotropic hyperelastic material using the polynomial strain
energy density function

W = C10(I1 − 3) + C01(I2 − 3) + C20(I1 − 3)2 + C11(I1 − 3)(I2 − 3) (11)

where I1 and I2 are the first and the second invariant of the left Cauchy-Green deformation tensor, and
where Cij are empirically determined material constants for a human artery according to [17].

3.1.1 Numerical validation of the backward displacement method

To validate the backward displacement method a zero-pressure geometry is pressurized in a forward
analysis by applying a uniformly distributed pressure load of 80 mmHg to the inner surface of the vessel
wall. The resulting geometry is taken as the in vivo measured geometry at the diastolic phase and serves
as a starting point for the backward problem. This inverse problem is then solved using the backward
displacement method in order to restore a zero-pressure geometry which is eventually compared to the
original zero-pressure geometry. Upon convergence (i = n) the maximum nodal deviation between the
original (X) and the restored (Xn = X∗) zero-pressure geometry is of the same order of magnitude as
the maximum residual rnmax.

As defined by (9) and (10) in section 2.2, the maximum residual represents the maximal distance
between a node at the originally in vivo measured geometry xm and the corresponding node resulting
from a forward analysis xi started from the ith approximation of the restored zero-pressure geometry
Xi. Its evolution throughout the iterative process is shown in Figure 2 in order to evaluate the rate of
convergence when solving for the zero-pressure geometry using the backward displacement method.
The logarithm of the maximum residual decreases linearly during subsequent iterations until it reaches
the machine accuracy.
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Figure 2: Rate of convergence when solving for the zero-pressure geometry of a thick-walled cylinder
(example 1) using the backward displacement method.

3.1.2 Evaluation of the effect of in vivo stress incorporation

To evaluate the effect of in vivo stress incorporation, a simulation is performed in which the internal
pressure is first set to the end-diastolic pressure (80 mmHg) and subsequently increased to the end-
systolic pressure (120 mmHg). This is done for three different setups:

1. The in vivo measured geometry is assumed to be the unloaded geometry. In the forward simula-
tion the in vivo measured geometry is inflated using the physiological pressure values (80 mmHg
diastolic pressure; 120 mmHg systolic pressure). The results are visualized in quadrant I.

2. The in vivo measured geometry is assumed to be the geometry at end-diastole, but neglects the
existence of prestress at the diastolic phase. In the forward simulation the in vivo measured ge-
ometry is only inflated to 40 mmHg, the end-systolic minus end-diastolic pressure difference. To
allow for a fair comparison of the calculated stresses with the other two cases, the stress tensor
field was corrected, adding an approximation of the stress field at diastole. The latter resulted
from a simulation in which 80 mmHg was applied onto the diastolic geometry. The results are
visualized in quadrant IV.

3. The proposed strategy in which the forward simulation towards the physiological pressure values
starts from the restored zero-pressure geometry (pm= 80 mmHg). This results in a prestressed in
vivo geometry at diastole. The results are visualized in both quadrant II and III.
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(a) (b)

Figure 3: (a) Contours of the maximum principal stress [Pa] at peak-systole. (b) Grid of the undeformed
reference geometry, together with inner and outer contours of the zero-pressure (black), the end-diastolic
(blue dotted line) and the peak-systolic (red dashed line) geometries. The inner radii of the corresponding
contours, the radial end-diastolic to peak-systolic distension and the ratio of the different contours to
the measured inner radius (rm= 0.547 mm) are tabulated. For more information about the different
quadrants, the reader is referred to the text in section 3.1.2.

Figure 3(a) presents the maximum principal or circumferential stress at end-systole (120 mmHg).
The contour plots are shown on the corresponding geometry. Figure 3(b) visualizes the grid of the
undeformed reference geometry, together with inner and outer contours of the zero-pressure (black), the
end-diastolic (blue dotted line) and the peak-systolic (red dashed line) geometries. Next to the figure the
inner radii, the peak-systolic minus end-diastolic radial displacement, and the ratio of the inner radii to
the inner radius of the measured geometry (rm= 0.547 mm) are tabulated for each of the three setups.
By definition, note that the measured geometry equals the zero-pressure geometry in setup 1, and the
end-diastolic geometry in setups 2 and 3.

Compared to setup 3, the results in Figure 3 clearly show the overestimation of the maximum prin-
cipal stress when the in vivo measured geometry is assumed to be the unloaded geometry (setup 1).
Furthermore, the outer contours of the cross sectional areas at end-diastole and peak-systole are a better
approximation when the in vivo geometry is assumed to be the diastolic geometry (setup 2). How-
ever, the peak-systolic minus end-diastolic radial displacement in setup 2 is overestimated by a factor of
4.3 due to the nonlinear material law and the absence of prestress/prestrain at the start of the inflation
process.

3.2 Example 2: in vivo stress incorporation in a mouse-specific abdominal aorta

In a second example, a more complex cardiovascular structure was created based on contrast-enhanced
micro-CT images of the abdominal aorta of an in-house bred male ApoE -/- mouse on a C57BL/6
background (age: 5 months, body weight: 29 g). A mouse-specific 3D geometry of the aortic lumen
containing four side branches was obtained in vivo, by segmentation of micro-CT (Triumph, Gamma
Medica) images in Mimics (Materialise), Figure 4. In order to obtain sufficient contrast during the
imaging process the mouse was intravenously injected with Aurovist (Nanoprobes), a contrast agent
which provided satisfying results in earlier studies [18]. Using pyFormex [19] a structured grid was
projected onto the outer surface resulting from segmentation yielding a hexahedral mesh for the aortic
wall, Figure 5(a), according to the method of De Santis et al. [20]. The mesh for the aortic wall consists
of 80640 elements with 5 elements to represent the wall thickness, 48 elements in the circumferential
direction and local refinements in the bifurcation regions, Figure 5(b). The wall thickness was assumed
to be 20 percent of the local radius and thus varies throughout the structure.

The element type, the free radial displacement boundary condition at the ending cross sections (3)
and the polynomial hyperelastic material model (11) were adopted from the first example (section 3.1).
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Figure 4: Geometry of the lumen (blue) resulting from the segmentation process of the micro-CT images
using Mimics (Materialise). Based on this geometry, the abdominal aortic wall was generated using
pyFormex (red).

For example purposes only, identical material parameters as in the example of the human vessel were
used for the constitutive material law, which can be justified by the fact that the basic constituents of the
arterial wall are similar in all mammals.

(a) (b)

Figure 5: Hexahedral mesh for the arterial wall of the abdominal aorta of a mouse (length sample about
20 mm) and its side branches (a), and a detail of the mesh at the trifurcation region (b).

To further evaluate the backward displacement method this more complex geometry was brought
to its zero-pressure state, assuming the internal pressure load at the moment of medical imaging to
be 80 mmHg. Afterwards, in vivo stress was computed by reapplying this pressure load in a forward
calculation.

The rate of convergence (Figure 6) is plotted for a backward displacement simulation with a con-
vergence criterion set at 0.01% of the mean arterial diameter. Similarly to the convergence rate of the
simplified artery in example 1, the logarithm of the maximum residual follows a linear decline after the
second iteration. Although the geometry is much more complicated, only a three times less steep slope
was found. Remark that the wall clock time of the overall calculation varies linearly with the number
of iterations. The proportionality constant is the time required to perform one forward calculation. For
this specific case and for a structural solver calculating in parallel on all 12 cores of a Dell PowerEdge
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R610 server with 2 six-core Intel Xeon X5680 3.33GHz processors and 96GB RAM, the computation
time per iteration takes approximately 1270 s.

Figure 6: Rate of convergence when solving for the zero-pressure geometry of a mouse-specific abdom-
inal aorta (example 2) using the backward displacement method.

Figure 7 depicts the contour plots of the stress field and the displacement field present in the in vivo
measured geometry at the moment of medical imaging. This is the result of applying the end-diastolic
pressure on the restored zero-pressure geometry of the more complex cardiovascular structure.

(a) (b)

Figure 7: Contours of (a) the maximum principal stress [Pa], and (b) the displacement [m]. Both after
applying the internal pressure load, present at the moment of medical imaging, onto the restored zero-
pressure geometry.

4 Conclusion

In conclusion, this paper presents a method to restore the original geometry of a structure in absence
of its loading state, and to recover the in vivo stress field of the final, loaded structure. Therefore, a
given final geometry and a given load are used in a fixed point algorithm in which an iteratively updated
displacement field is subtracted from the final reference geometry. The proposed method allows us to
restore the zero-pressure geometry of in vivo measured cardiovascular structures. To emphasize the im-
portance of prestress in this field of research, the example in section 3.1 shows that the incorporation
of in vivo stress in numerical models of arteries is necessary to properly estimate the stress and dis-
placement in the physiological blood pressure range. Furthermore, the convergence rate of the proposed
technique is high, and it decreases only slightly for a much more complex structure using the same con-
stitutive material law. Finally, and most importantly, the backward displacement method allows for a
straightforward implementation of the algorithm in combination with existing structural solvers as only
an update of the mesh coordinates needs to be performed.
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