

#### COST-EFFECTIVENESS OF MEDICAL INNOVATIONS:

#### REVISION HIP ARTHROPLASTY IN TYPE IIIB ACETABULUM DEFECTS WITH A 3D-PRINTED CUSTOM POROUS THREE-FLANGED ACETABULAR IMPLANT.

Materialise World Summit

Philip Tack Lieven Annemans



#### Innovations

- Drivers of economies
- The appropiate cost
- Health and economics



# Health Technology assessment

• WHO:

The systematic evaluation of properties, effects, and/or impacts of health technology. It is a multidisciplinary process to evaluate the social, economic, organizational and ethical issues of a health intervention or health technology. The main purpose of conducting an assessment is to inform a policy decision making.





# The basics: Costs... for who?

- Patients
- Hospitals
- Doctors
- Public healthcare providers
- Insurance companies
- •



(QALYs)

#### UNIVERSITEIT Working example: 3D printed implant for total hip revision arthroplasty

GENT





# **Clinical evidence**

- Clinical studies  $\rightarrow$  usable data
- $\rightarrow$  Structure of the model
- $\rightarrow$  Transition probabilities
- $\rightarrow$  Complications profile
- → Utilities & Costs



# Building the model





# **Complications profile**

| Custom Triflanged Acetabular Component |        |        |        |        |         |
|----------------------------------------|--------|--------|--------|--------|---------|
| Type of complications                  | Berasi | Barlow | Wind   | Tauton | Average |
| Sciatic nerve pain                     | 4.17%  |        | 5.26%  | 5.26%  | 3.07%   |
| Bursitis                               | 4.17%  |        |        | 0.00%  | 0.61%   |
| Dislocation                            | 0.00%  | 22.37% | 26.32% | 21.05% | 19.07%  |
| Loosening                              | 0.00%  | 4.62%  | 5.26%  | 3.51%  | 3.62%   |
| Infection (maj)                        | 8.33%  | 6.35%  | 5.26%  | 7.02%  | 6.75%   |
| infection (min)                        |        |        | 10.53% | 0.00%  | 1.23%   |
| All operative complications            |        | 26.98% |        |        | 10.43%  |
| Dislocation Barlow calculated          |        | 22.37% |        |        | 8.65%   |
| Debridement                            |        | 3.17%  |        | 3.51%  | 2.45%   |

| aMace                 |        |
|-----------------------|--------|
| Type of complications | Myncke |
| Dislocation           | 18.18% |
| Infection             | 4.55%  |
| Loosening             | 0.00%  |
| Other                 | 13.64% |
| Hematom               | 4.55%  |
| Sciatic nerve palsy   | 4.55%  |
| Pelvic instability    | 4.55%  |



#### Utilities

| Successful | Successful | Re-revision<br>aMace | Re-revision<br>Triflanged | Re-revision<br>impossible |
|------------|------------|----------------------|---------------------------|---------------------------|
| Men <65    | 0.7731     | 0.5507               | 0.5928                    | 0.4513                    |
| Men 65-74  | 0.7487     | 0.5333               | 0.5740                    | 0.4371                    |
| Men 75-85  | 0.6756     | 0.4812               | 0.5180                    | 0.3944                    |
| Men 85+    | 0.6756     | 0.4812               | 0.5180                    | 0.3944                    |



# Transition probabilities & Costs

- Transition probabilities:
  - Implant's profile (separate models)
  - Age of the patient
  - State in t-1



#### Cost side

- Perspective: Public Healthcare Provider
- Dead
- Successful revision
- Impossible revision / resection arthroplasty
- Re-revision... Implant dependent
  - Complications
  - Revalidations
  - Implant itself



#### Patient X

- Male, <65years old
- Needs a re-revision and has a acetabular paproski type IIIB defect
- Standard CTAC or new aMace implant

|      | aMace       | СТАС      |             | DELTA aMa  |            |             |
|------|-------------|-----------|-------------|------------|------------|-------------|
| QALY | COST        | QALY      | COST        | QALY       | COST       | ICER        |
| 7.15 | € 25,316.96 | 7.0152118 | € 23,114.66 | 0.13051719 | € 2,202.31 | € 16,873.69 |



# What about other profiles?

|                 | aMad | ce Integrated | CTAC |             | Delta aMace vs. CTAC |         | ICER     |
|-----------------|------|---------------|------|-------------|----------------------|---------|----------|
|                 | QALY | COST          | QALY | COST        | QALY                 | COST    |          |
| Male, <65y      | 7.15 | € 25,316.96   | 7.02 | € 23,114.66 | 0.13                 | 2202.31 | 16873.69 |
| Male, 65-74y    | 5.70 | € 25,310.73   | 5.62 | € 22,729.94 | 0.08                 | 2580.78 | 31372.29 |
| Male, 75-84y    | 4.91 | € 25,308.63   | 4.84 | € 22,644.90 | 0.07                 | 2663.73 | 37031.90 |
| Male, 85+       | 3.10 | € 25,289.58   | 3.07 | € 21,988.99 | 0.03                 | 3300.59 | 99017.03 |
| Female, <65y    | 6.98 | € 25,317.20   | 6.85 | € 23,132.14 | 0.13                 | 2185.06 | 16955.23 |
| Female, 65-74y  | 5.84 | € 25,311.40   | 5.75 | € 22,769.46 | 0.09                 | 2541.94 | 28563.32 |
| Female, 75-84y  | 5.93 | € 25,311.18   | 5.83 | € 22,795.01 | 0.10                 | 2516.17 | 24706.18 |
| Female, 85+     | 3.75 | € 25,292.35   | 3.69 | € 22,086.19 | 0.06                 | 3206.16 | 55972.21 |
| Average, <65y   | 7.05 | € 25,317.08   | 6.92 | € 23,123.34 | 0.13                 | 2193.74 | 16949.78 |
| Average, 65-74y | 5.86 | € 25,311.10   | 5.77 | € 22,751.83 | 0.09                 | 2559.27 | 29091.45 |
| Average, 75-84y | 5.80 | € 25,310.11   | 5.71 | € 22,729.70 | 0.09                 | 2580.41 | 27292.76 |
| Average, 85+    | 3.70 | € 25,291.48   | 3.64 | € 22,053.85 | 0.05                 | 3237.63 | 60683.17 |



# Uncertainty / Variance

- Results of the studies
- Utility estimates
- Cost estimates
- Transition probabilities
- ....
- What is the impact of a mistake or change of the value chosen for a specific variable?



# Sensitivity analysis

• Deterministic: +30%; -30%

#### • Basecase: €16873

Impossible Re-revisions Cost of successful revision Surgical mortality (all) Utility loss due to complications **Complication rate** Utility of Impossible revision Cost of Complication Utility of Re-revision Cost of Revalidation Cost of impossible revision Utility of Successfull **Re-Revision** rate Cost of Surgery Cost of aMace Implant





#### Sensitivity analysis: Probabilistic

• <65 years old male







# 85+ year old woman

Basecase: €55972







# Conclusions for this case

- Good value for money
- <85 years: cost effective at €50k/QALY
- Basecase: 65 year old man: ICER of 16873
- High impact:
  - Price of the new 3D-printed implant
  - Price of the surgery
  - Re-revision rate
  - Utility estimate for successful surgery



#### Perspective

- What about other (applications of) new technologies (like medical 3D-printing)
- Early data generation
- Reimbursement to generate evidence?
- Proving the value or pushing the price?



# Value for money of Medical 3D-printing

- Complex cases not for standard procedures
- High impact on QoL
  - Young patients
  - High morbidity associated with failure



#### COST-EFFECTIVENESS OF MEDICAL INNOVATIONS:

#### REVISION HIP ARTHROPLASTY IN TYPE IIIB ACETABULUM DEFECTS WITH A 3D-PRINTED CUSTOM POROUS THREE-FLANGED ACETABULAR IMPLANT.

Materialise World Summit

Philip Tack Lieven Annemans